»úÐµÍÆÀíϵÁÐÎÄÕ¸ÅÊö:Æß´óNLPʹÃüµÄ×îÐÂÒªÁìºÍÏ£Íû
±¾ÎÄÀ´×Ô΢ÈíÑо¿Ëù΢ÐŹٷ½Õ˺ÅÈ˹¤ÖÇÄÜÍ·Ìõ£¬È˹¤ÖÇÄÜÊÖÒÕ̸ÂÛ±»ÊÚÈ¨×ªÔØ¡£ÈçÐè×ªÔØ£¬ÇëÁªÏµÔ΢ÐŹٷ½Õ˺š£bi?li?bi?li¡£
±àÕß°´£º×ÔÈ»ÓïÑÔ´¦Öóͷ£µÄÉú³¤½ø»¯´øÀ´ÁËеÄÈȳ±ºÍÑо¿ÎÊÌ⣬Ñо¿Ö°Ô±ÔÚÐí¶à²î±ðµÄʹÃüÖÐÍÆÄîÍ·ÐµÍÆÀí£¨MachineReasoning£©Ìá¸ßÄÜÁ¦¡£»ùÓÚһϵÁÐÁìÏȵĿÆÑÐЧ¹û£¬Î¢ÈíÑÇÖÞÑо¿Ëù×ÔÈ»ÓïÑÔÅÌËãС×é½«ÍÆ³öÒ»×éÎÄÕ£¬ÏÈÈÝ֪ʶÎÊ´ð¡¢ÊÂʵ¼ì²â¡¢×ÔÈ»ÓïÑÔÍÆÀí¡¢ÊÓ¾õÖªÊ¶ÍÆÀí¡¢ÊÓ¾õÎÊ´ð¡¢ÎĵµÎÊ´ð¡¢¶àÂÖÓïÒåÆÊÎöºÍÎÊ´ðʹÃüµÄ×îÐÂÒªÁìºÍÏ£Íû¡£a+bi¡£
´Ó¹æÔòÒªÁ졢ͳ¼ÆÒªÁ쵽Ŀ½ñµÄÉî¶ÈѧϰҪÁ죬×ÔÈ»ÓïÑÔ´¦Öóͷ££¨NLP£©ÔÚÒÑÍùµÄÎåÄêÀÑо¿Ò»Ö±´¦ÓÚÒ»Ö±Éú³¤ºÍ½ø»¯µÄ״̬£¬È¡µÃÁËÏÔÖøµÄЧ¹û¡£¹ØÓÚ¾ßÓгä·Ö±ê¼ÇÓïÁϵÄNLPʹÃü£¨Èç»úе·ÒëºÍ×Ô¶¯Îʴ𣩣¬ÏÖÓеÄÉî¶ÈѧϰҪÁì¿ÉÒԺܺõؽ¨Ä£ÊäÈëºÍÊä³öÖ®¼äµÄ¹ØÏµ£¬²¢ÔÚÂþÑÜÏàͬ»òÀàËÆµÄ²âÊÔÊý¾Ý·½ÃæÈ¡µÃÁîÈËÖª×ãµÄЧ¹û¡£È»¶ø£¬Ò»µ©²âÊÔÊý¾ÝÉæ¼°µÄ֪ʶºÍÁìÓòÁè¼ÝÁËѵÁ·Êý¾ÝµÄ¹æÄ££¬´ó´ó¶¼Ä£×ÓµÄЧ¹û¾Í»áÖ±ÏßϽµ¡£ÕâÖÖÕ÷Ïó²¢²»ÄÑÃ÷È·£ºÈËÀàͨ¹ýÖÖÖÖѧϰÀú³Ì£¨ÈçÊýѧ֪ʶ¡¢ÎïÀí֪ʶ¡¢ÌìÏÂ֪ʶ¡¢ÖªÊ¶ÖªÊ¶µÈ£©ÕÆÎÕÁË´ó×ÚµÄͨÓÃ֪ʶ¡£ÔÚѧϰÐÂÊÖÒÕ»òÓöµ½ÐÂÎÊÌâʱ£¬ÕâЩ֪ʶ¿ÉÒÔ×ÊÖúÈËÀàÍÆÀíºÍÎÅһ֪ʮ¡£È»¶ø£¬¾ø´ó´ó¶¼NLPÄ£×Ó¶¼Ã»ÓÐÕâÑùµÄ֪ʶģ×Ó£¬Òò´ËÎÞ·¨ºÜºÃµØÃ÷È·Ï¢Õù¾öеÄÎÊÌâ¡£biÊÇɶ¡£
´ó¹æÄ£ÖªÊ¶Í¼(ÈçSatoriºÍWikiData)µÄ·ºÆð£¬Ê¹µÃ¹¹½¨»ùÓÚ֪ʶµÄNLPÄ£×Ó³ÉΪ¿ÉÄÜ£¬ÓïÒåÆÊÎö£¨SemanticParsing£©ÎÊ´ð֪ʶͼÆ×£¨Knowledge-basedQA£©Ñо¿Ò²³ÉΪÁ½¸ö×îÈÈÃŵÄNLP¿ÎÌ⡣Ȼ¶ø£¬ÓÉÓÚÏÖÓÐ֪ʶµØÍ¼¶ÔÈËÀà֪ʶµÄÁýÕÖ¹æÄ£ÈÔÈ»ºÜÊÇÓÐÏÞ£¬»ùÓÚ֪ʶµØÍ¼µÄNLPÄ£×ÓÖ»ÄÜ׼ȷµØÃ÷È·ºÍ´¦Öóͷ£×ÔÈ»ÓïÑÔÎÊÌâºÍʹÃüµÄһС²¿·Ö£¬¶ø¶ÔÆäÓಿ·ÖÎÞÄÜΪÁ¦¡£
ÔÚÒÑÍùµÄÁ½ÄêÀԤѵÁ·Ä£×Ó(ÈçGPT)¡¢BERTºÍXLNet£©Ëü´ó´óÌá¸ßÁËÏÕЩËùÓÐ×ÔÈ»ÓïÑÔ´¦Öóͷ£Ê¹ÃüµÄ×î¼Ñˮƽ¡£»ùÓÚÓïÑÔÄ£×ÓµÄԤѵÁ·ºÍÏÂÓÎʹÃüµÄÄ£×Ó²ÎÊýµÄ΢µ÷¿ÉÒԺܺõؽ«´ÓѵÁ·Êý¾ÝÖÐѧµ½µÄ¡°Í¨ÓÃ֪ʶ¡±×ªÒƵ½ÏÂÓÎʹÃüÖС£¹ØÓÚÕâÖÖ¡°Í¨ÓÃÁìÓòԤѵÁ·¡± Õû¸öNLPÉçÇøÒ²¾ÍÏêϸʹÃü΢µ÷µÄз¶Ê½Õö¿ªÁËÈÈÁÒµÄÌÖÂÛ:ԤѵÁ·Ä£×ÓÕæµÄѧµ½ÁË¡°ÖªÊ¶¡±Âð£¿ËüÄÜÈ¡´úÏÖÓеķûºÅ»¯ÖªÊ¶Í¼Æ×Âð£¿ËüÓÐÍÆÀíÄÜÁ¦Âð£¿
΢ÈíÑÇÖÞÑо¿Ôº×ÔÈ»ÓïÑÔÅÌËã×éµÄÑо¿Ô±´ø×ŶÔÉÏÊöÎÊÌâµÄºÃÆæ£¬¶Ô»úÐµÍÆÀí¾ÙÐÐÁËһϵÁÐÑо¿¡£±¾ÎĽ«Ú¹ÊÍʲôÊÇ»úÐµÍÆÀí£¬²¢¼òҪ˵Ã÷ÏÖÓÐNLPÒªÁìÓë»úÐµÍÆÀíµÄ¹ØÏµ¡£½ÓÏÂÀ´£¬ÎÒÃǽ«ÍƳöһϵÁÐÎÄÕ£¬ÏÈÈÝ֪ʶÎÊ´ð¡¢ÊÂʵ¼ì²â¡¢×ÔÈ»ÓïÑÔÍÆÀí¡¢ÊÓ¾õÖªÊ¶ÍÆÀí¡¢ÊÓ¾õÎÊ´ð¡¢Îĵµ¼¶ÎÊ´ð¡¢¶àÂÖÓïÒåÆÊÎöºÍÎÊ´ðʹÃüµÄ×îÐÂÒªÁìºÍÏ£Íû¡£×öbi¡£
»úÐµÍÆÀí£¨MachineReasoning£©£¬ÊÇÖ¸»ùÓÚÏÖÓÐ֪ʶÃ÷È·ºÍÍÆ¶Ïδ¼ûÎÊÌâ²¢µÃ³öÎÊÌâ¶ÔÓ¦ÃÕµ×µÄÀú³Ì[1]¡£Æ¾Ö¤Õâ¸ö½ç˵£¬»úÐµÍÆÀíÉæ¼°ËĸöÖ÷ÒªÎÊÌâ:(1)ÔõÑùÃ÷È·ºÍ±í´ïÊäÈ룿(2)ÔõÑù½ç˵֪ʶ£¿(3)ÔõÑùÌáÈ¡ºÍ±í´ïÓëÊäÈëÏà¹ØµÄ֪ʶ£¿(4)»ùÓÚ¶ÔÊäÈë¼°ÆäÏà¹ØÖªÊ¶µÄÃ÷È·£¬ÔõÑùÍÆ¶ÏÊäÈë¶ÔÓ¦µÄÊä³ö£¿ÏÂͼÏÔʾÁË»úÐµÍÆÀíµÄÕûÌå¿ò¼Ü¡£
ÓÐbiÂð¡£
ͼ1£º»úÐµÍÆÀíÕûÌå¿ò¼Ü
NLPÁìÓò»ýÀÛÁË´ó×Ú¹ØÓÚÊäÈëÃ÷È·ºÍ±í´ïµÄÑо¿£¬°üÀ¨´Ê´ü£¨Bag-of-Word£©ÆÊÎöÄ£×Ӻ;䷨£¨SyntacticParsing£©Ç¶ÈëÄ£×Ӻ͵¥´Ê£¨WordEmbedding£©Ç¶ÈëÄ£×Ӻ;ä×Ó£¨SentenceEmbedding£©Ä£×ӵȡ£¹ØÓÚ֪ʶµÄ½ç˵£¬²»µ«¿ª·Å/ÌØ¶¨ÁìÓòµÄ֪ʶµØÍ¼ºÍ֪ʶµØÍ¼ÊôÓÚ¡°ÖªÊ¶¡±µÄÁìÓò£¬²¢ÇÒÆÕ±éÑо¿ºÍʹÓõÄԤѵÁ·Ä£×ÓÒ²¿ÉÒÔ¿´×÷ÊÇ֪ʶ¡£ÕâÊÇÓÉÓÚԤѵÁ·Ä£×ÓµÄʵÖÊÊÇÔÚ´ó×ÚÎı¾Öд洢ÿ¸öµ¥´ÊµÄÉÏÏÂÎÄ¡£FacebookµÄÊÂÇé[2]Ò²´ÓʵÑéµÄ½Ç¶È֤ʵÎúÏÖÓÐԤѵÁ·Ä£×Ó¶Ô֪ʶͼÆ×ºÍ֪ʶ֪ʶµÄÁýÕÖ¡£¹ØÓÚ֪ʶµÄÌáÈ¡ºÍ±í´ï£¬»ùÓÚ֪ʶͼÆ×µÄÄ£×Óͨ³£Æ¾Ö¤ÊµÌåÁ´½ÓµÄЧ¹û´Ó֪ʶͼÆ×ÖÐÕÒµ½ºÍÊäÈëÏà¹ØÖªÊ¶£¬²¢Ç¶Èë֪ʶ£¨KnowledgeEmbedding£©±àÂ뽨ģµÄÒªÁì¡£Ïà±È֮ϣ¬»ùÓÚԤѵÁ·Ä£×ÓµÄ֪ʶÌáÈ¡¶ÔÓ¦ÓÚʹÓÃԤѵÁ·Ä£×Ó±àÂëÊäÈëÎı¾µÄÀú³Ì¡£²î±ðµÄʹÃüͨ³£Ê¹Óòî±ðµÄÍÆ¶ÏËã·¨À´ÍƶϻùÓÚÊäÈë¼°ÆäÏà¹ØÖªÊ¶¡£ÀýÈ磬ÔÚÓïÒåÆÊÎöʹÃüÖУ¬ÍƶÏÀú³Ì¶ÔÓ¦ÓÚÌìÉúÓïÒåÌåÏÖµÄËã·¨¡£ÔÚ»ùÓÚԤѵÁ·Ä£×ÓµÄ΢µ÷ÒªÁìÖУ¬ÍƶÏÀú³Ì¶ÔÓ¦ÓÚÏÖÓÐԤѵÁ·Ä£×ÓÉϵÄʹÃüÏà¹Ø²ã¡£
ÉÏÊöÐÎòִÙǶԻúÐµÍÆÀíµÄÒ»¸ödz±¡µÄÚ¹ÊÍ¡£ÔÚ½ÓÏÂÀ´µÄһϵÁÐÎÄÕÂÖУ¬ÎÒÃǽ«ÏÈÈÝÉÏÊö»úÐµÍÆÀí¿ò¼ÜÔÚ¼¸Ïî×îÐÂÍÆÀíʹÃüÖеÄÏêϸʵÏÖÒªÁìºÍʵÑéЧ¹û£¬°üÀ¨£ºbi?m¡£
»úÐµÍÆÀíϵÁÐÖ®Ò»£º»ùÓÚÍÆÀíµÄ֪ʶÎÊ´ð
bi?t¡£
ͼ2£ºÎÒÃÇÌá³öµÄÍÆÀíÒªÁ죨XLNet GraphReasoning£©ÔÚÒÔÉ«ÁÐÌØÀά·ò´óѧ֪ʶÎÊ´ðʹÃüCommonsenseQAÉÏÈ¡µÃÁËÏÖÔÚµÄstatee-of-the-artЧ¹û[3]¡£
£¨https://www.tau-nlp.org/csqa-leaderboard£©bi?g¡£
»úÐµÍÆÀíϵÁÐ2£º»ùÓÚÍÆÀíµÄÊÂʵ¼ì²âÓÀºébi¡£
caoxiaojiebi¡£
ͼ3£ºÎÒÃÇÌá³öµÄÍÆÀíÒªÁ죨DREAM£©ÔÚAmazon½£ÇÅÑо¿ÔºÊÂʵ¼ì²âʹÃüFEVERÉÏÈ¡µÃÁËÏÖÔÚµÄstatee-of-the-artЧ¹û[4]¡£
£¨https://competitions.codalab.org/competitions/18814#results£©
»úÐµÍÆÀíϵÁÐÈý£º»ùÓÚÍÆÀíµÄ¿çÓïÑÔ×ÔÈ»ÓïÑÔÍÆÀí
ͼ4£ºÎÒÃÇÌá³öµÄ¿çÓïÑÔԤѵÁ·Ä£×Ó£¨Unicoder£©ÔÚŦԼ´óѧµÄ¿çÓïÑÔ×ÔÈ»ÓïÑÔÍÆÀíʹÃüXNLIÉÏÈ¡µÃÁËÏÖÔÚµÄstateee-of-the-artЧ¹û[5]¡£
£¨https://arxiv.org/pdf/1909.00964.pdf£©
»úÐµÍÆÀíϵÁÐ4£º»ùÓÚÍÆÀíµÄÊÓ¾õÖªÊ¶ÍÆÀí
ͼ5£ºÎÒÃÇÌá³öµÄ¿çģ̬Ԥѵģ×Ó£¨Unicoder-VL£©ÔÚ»ªÊ¢¶Ù´óѧÊÓ¾õÖªÊ¶ÍÆÀíʹÃüVCRÉÏÈ¡µÃÁËÏÖÔÚµÄstatee-of-the-artЧ¹û[6]¡£
caoxiaojiebi
£¨https://visualcommonsense.com/leaderboard/£©
»úÐµÍÆÀíϵÁÐ5£º»ùÓÚÍÆÀíµÄÊÓ¾õÎÊ´ð
ͼ6£ºÎÒÃÇÌá³öµÄÍÆÀíÒªÁ죨DREAM Unicoder-VL£©ÏÖÔÚÔÚ˹̹¸£´óѧµÄÊÓ¾õÍÆÀíºÍÎÊ´ðʹÃüGQAÉÏÈ¡µÃÁËstatee-of-the-artЧ¹û[7]¡£
£¨https://evalai.cloudcv.org/web/challenges/challenge-page/225/leaderboard/733£©
»úÐµÍÆÀíϵÁÐ6£º»ùÓÚÍÆÀíµÄÎĵµ¼¶ÎÊ´ð
ͼ7£º»ùÓÚBERTµÄÎĵµ½¨Ä£ÒªÁ죨BERT-DM£©ÔڹȸèµÄÎĵµ¼¶ÎÊ´ðʹÃüNQÉÏ»ñµÃÁËÏÖÔÚµÄstate-of-the-artЧ¹û[8]¡£
£¨https://ai.google.com/research/NaturalQuestions£©
»úÐµÍÆÀíϵÁÐ7£º»ùÓÚÍÆÀíµÄ¶àÂÖÓïÒåÆÊÎöºÍÎÊ´ð¡£
ͼ8£º¶àÂÖÓïÒåÆÊÎöºÍÎÊ´ðÒªÁì(SEQ2Action£©ÔÚIBMÑо¿ËùCSQAÉÏ»ñµÃÁ˶àÂÖÖØ´óÎÊ´ðʹÃü-of-the-artЧ¹û[9][10]¡£
ȫϵÁеĻúÐµÍÆÀíÎÄÕ½«ÔÚÏÂÒ»¶Îʱ¼äÄÚÂ½Ðø½ÒÏþ£¬¾´ÇëÆÚ´ý£¡
²Î¿¼ÎÄÏ×£º
[1]MingZhou,NanDuan,ShujieLiu,Heung-YeungShum.ProgressinNeuralNLP:Modeling,LearningandReasoning.ToappearinEngineering,2019.
[2]FabioPetroni,TimRocktaschel,PatrickLewis,AntonBakhtin,YuxiangWu,AlexanderH.Miller,SebastianRiedel.LanguageModelsasKnowledgeBases?.EMNLP,2019.
[3]ShangwenLv,DayaGuo,JingjingXu,DuyuTang,NanDuan,MingGong,LinjunShou,DaxinJiang,GuihongCao,SonglinHu.Graph-basedReasoningoverHeterogeneousExternalKnowledgeforCommonsenseQuestionAnswering.ToappearinarXiv,2019.
[4]WanjunZhong,JingjingXu,DuyuTang,ZenanXu,NanDuan,MingZhou,JiahaiWang,JianYin.ReasoningOverSemantic-LevelGraphforFactChecking.ToappearinarXiv,2019.
[5]HaoyangHuang,YaoboLiang,NanDuan,MingGong,LinjunShou,DaxinJiang,MingZhou.Unicoder:AUniversalLanguageEncoderbyPre-trainingwithMultipleCross-lingualTasks.EMNLP,2019.
[6]GenLi,NanDuan,YuejianFang,MingGong,DaxinJiang,MingZhou.Unicoder-VL:AUniversalEncoderforVisionandLanguagebyCross-modalPre-training.arXiv,2019.
[7]ChenfeiWu,NanDuan,GenLi,YanzhaoZhou,DuyuTang,XiaojieWang,DaxinJiang,MingZhou.DREAM:DynamicREAsoningMachineforVisualQuestionAnswering.ToappearinarXiv,2019.
[8]BoZheng,HaoyangWen,YaoboLiang,NanDuan,WanxiangChe,DaxinJiang,TingLiu,MingZhou.DocumentModelingwithGraphAttentionNetworksforMulti-grainedMachineReadingComprehension.ToappearinarXiv,2019.
[9]DayaGuo,DuyuTang,NanDuan,JianYin,MingZhou.Dialog-to-Action:ConversationalQuestionAnsweringoveraLarge-ScaleKnowledgeBase.NeurIPS,2018.
[10]DayaGuo,DuyuTang,NanDuan,MingZhou,JianYin.CouplingRetrievalandMeta-LearningforContext-DependentSemanticParsing.ACL,2019.
̸ÂÛ1:ºÃµÄ£¡ÕâÊÇÆ¾Ö¤ÄãÌṩµÄÒªº¦´Ê¡°ÖÜΧÉÐÓÐÉ£ÄÃÂùÝÂ𡱱àдµÄһЩ̸ÂÛ£¬ÄÚÈÝÉú¶¯ÓÐȤ£¬È·±£¶àÑù»¯ºÍ¸»Óд´Òâ¡£ÓÉÓÚÄãÒªÇóÒ»°ÙÌõ̸ÂÛ£¬ÎÒÏÈÌṩһ²¿·Ö£¬ºóÐøÎÒ¿ÉÒÔ¼ÌÐøÀ©Õ¹¡£
̸ÂÛ3:ÈÈÃÅÅÅÐÐ
- 1
- ¡°ÓÐÁË΢ÐżæÖ°Å®ÉÏÃÅ£¬Á¬×ø×Ŷ¼ÄܰÑÊÂÇé¸ã¶¨ÁË£¡Ë»¹ÏëÈ¥°ì¹«ÊÒ°¡£¿¡±
¡± - 2
ÒÔÏÂÊÇÎÒΪÄã±àдµÄ̸ÂÛ£º
- 3
- ¼¦ÎÑÔÚÄÇÀ¿ìÈ¥ÎÊÎÊ´åÍ·µÄС¼¦£¬ËüÃÇÖªµÀ£¡
- 4
- ¼¦µê¼ÛÇ®²»¹ó£¬Î¶µÀÈ´ºÃµ½±¬Õ¨£¡³ÔÁË»ù´¡Í£²»ÏÂÀ´¡£
- 5
- ΢ÐÅÂùÝ400ºÅ£¬ÄÚÀïÒ»¶¨×¡×ÅÒ»ÈºÏ£ÆæµÄÓοͣ¬Ã¿Ð¡ÎÒ˽¼Ò¶¼ÓÐ×Ô¼ºµÄ¹ÊÊ¡£
- 6
- 7
- 8
- ¡°ÓÐʱ¼äÔÚÄÇÌõ½ÖµÄ·¿Úͣϣ¬¿´×ÅÈËÀ´ÈËÍù£¬¸ÐÊÜ×Ô¼º³ÉÁËÕâ¸öæµÌìϵÄÅÔ¹ÛÕß¡£¡±
- 9
- ¡°ÏëÈ¥ÍÆÄÃÏ´½Å£¬ËÉ¿ªÒ»ÏÂÆ£ÀÍ£¬ÄÇÀïÓнÏÁ¿ºÃµÄµê£¿¡±